Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Herrera, Manuel (Ed.)Three buildings that were repurposed for use as an elementary school were shutdown for three months in response to the pandemic. Building cold and hot water quality was monitored before reopening to detect and resolve chemical and microbiological problems. The authors collected first draw pre-flush and post-flush water samples. First draw water samples did not contain detectable disinfectant residual, but nickel and lead sometimes exceeded the health-based action limits for cold water (max. 144 μg Ni/L, 3.4 μg Pb/L). Stagnant cold water at a bathroom sink (188 MPN/100 mL) and drinking water fountain (141.6 MPN/100 mL), in the same building, exceeded the L . pneumophila thresholds advised by the World Health Organization (WHO) (10 CFU/mL) and American Industrial Hygiene Association (AIHA) (100 CFU/mL). Fixture flushing was conducted to remove cold and hot stagnant water and no L . pneumophila was detected immediately after flushing. Two weeks after no subsequent building water use, chemical and microbiological contaminant levels were found to be similar to levels prior to flushing with one exception. The maximum L . pneumophila level (kitchen sink, hot water: 61.1 MPN/100 mL) was found in a different building than the prior maximum detections. No repeat positive locations for L . pneumophila were found during the second visit, but new fixtures were positive the organism. When this study was conducted no evidence-based guidelines for plumbing recommissioning were available. A single plumbing flush reduced heavy metal and L . pneumophila levels below WHO and AIHA thresholds in all three buildings. Additional work is needed to examine the role of building size, type and plumbing design on fixture water quality in shutdown buildings.more » « less
-
null (Ed.)Carbonyl sulfide (COS) and carbon disulfide (CS 2 ) are important atmospheric gases that are formed from organic sulfur precursors present in natural waters when exposed to sunlight. However, it remains unclear how specific water constituents, such as dissolved organic matter (DOM), affect COS and CS 2 formation. To better understand the role of DOM, irradiation experiments were conducted in O 2 -free synthetic waters containing four different DOM isolates, acquired from freshwater to open ocean sources, and the sulfur-based amino acid, cysteine (CYS). CYS is a known natural precursor of COS and CS 2 . Results indicated that COS formation did not vary strongly with DOM type, although small impacts were observed on the kinetic patterns. COS formation also increased with increasing CYS concentration but decreased with increasing DOM concentration. Quenching experiments indicated that ˙OH was not involved in the rate-limiting step of COS formation, whereas excited triplet states of DOM ( 3 CDOM*) were plausibly involved, although the quenching agents used to remove 3 CDOM* may have reacted with the CYS-derived intermediates as well. CS 2 was not formed under any of the experimental conditions. Overall, DOM-containing synthetic waters had a limited to no effect towards forming COS and CS 2 , especially when compared to the higher concentrations formed in sunlit natural waters, as examined previously. The reasons behind this limited effect need to be explored further but may be due to the additional water quality constituents present in these natural waters. The findings of this study imply that multiple variables beyond DOM govern COS and CS 2 photoproduction when moving from freshwaters to open ocean waters.more » « less
An official website of the United States government
